Курс математического анализа занимает центральное место среди математических дисциплин и по праву считается квинтэссенцией современного математического знания. Слушатель этого курса знакомится практически со всеми идеями современной математики в их простейшей и самой наглядной форме, оттачивает мастерство логических рассуждений и разбирается с глубокими и многоуровневыми математическими построениями. Математический анализ является результатом творчества таких выдающихся учёных как И. Ньютон, Г. Лейбниц, Я. Бернулли, Л. Эйлер, Ж. Л. Лагранж, П. Ферма, О. Л. Коши, К. Вейерштрасс, А. Л. Лебег и многих других. С каждым из этих имён связаны не только математические результаты, но и значительные общекультурные достижения.
Представляемый курс ориентирован, прежде всего, на студентов первых курсов математических и естественнонаучных факультетов, но, несомненно, будет интересен широкому кругу профессионалов и любителей математики. Помимо стандартных тем, составляющих содержание курса математического анализа в первом семестре первого курса, мы затронем также ряд красивых и глубоких результатов, являющихся настоящими жемчужинами современной математики.
В начале курса мы познакомимся с элементами теории множеств, обсудим известные математические парадоксы, научимся применять математическую индукцию и узнаем одну из самых трудных аксиом современной математики – аксиому выбора. Далее мы введём понятие функции и отдельно остановимся на специальном классе функций – биекциях, научимся сравнивать бесконечные множества и докажем знаменитую теорему Кантора—Бернштейна. Основным множеством, с которым мы будем иметь дело в нашем курсе, является множество вещественных чисел, различные определения и свойства которого будут подробно обсуждаться. Затем изучим сходимость числовых последовательностей и числовых рядов, определим знаменитое число «е».
Важную часть курса составляют элементы топологии числовой прямой. Здесь будут обсуждаться свойства и структура открытых и замкнутых множеств, в простейшем виде мы познакомимся с мощнейшим средством математического анализа – теоремой Бэра. Предел функции и непрерывность функции являются центральными разделами нашего курса математического анализа. Наряду со стандартными утверждениями о непрерывных функциях мы уделим особое внимание описанию свойств множества точек разрыва функции.
Далее будут рассмотрены функциональные последовательности и ряды: мы сравним поточечную и равномерную сходимость, покажем, что равномерная сходимость сохраняет непрерывность, докажем известную теорему Вейерштрасса о равномерном приближении непрерывной функции многочленом.
Заключительный раздел курса посвящён дифференциальному исчислению. Мы познакомимся с классическим примером Вейерштрасса непрерывной, но нигде не дифференцируемой функции, выясним, насколько «плоха» может быть производная всюду дифференцируемой функции, докажем классический набор теорем Ферма, Ролля, Лагранжа и Коши, обоснуем правило Лопиталя и научимся раскладывать функции по формуле Тейлора, наконец, рассмотрим важный класс выпуклых функций.
В курсе также будут представлены исторические справки о знаменитых учёных, с идеями и результатами которых мы будем знакомиться.