Данный курс может быть полезен слушателям, интересующимся современными тенденциями в области искусственного интеллекта и машинного обучения. Он позволит составить первичное понимание предметной области, разобраться в классах решаемых задач, используемых методах решения, областях приложения результатов.
Каждый модуль курса включает видеолекции, презентации, ссылки на рекомендованные источники по теме и другие материалы. Для формирования практических навыков используются не только тестовые задания, но и кейсы.
В результате освоения онлайн-курса обучающиеся поймут специфику задач классификации, регрессии и кластеризации, сформируют навыки идентификации задач обучения с учителем и без учителя, познакомятся с основными используемыми в машинном обучении методами, рекомендательными системами, ассоциативными правилами и ансамблями: стекингом, бэггингом, бустингом. В рамках курса мы коснемся также проблем глубокого, или глубинного, обучения, нейросетевых методов. Слушатели узнают, что такое логистическая регрессии, как ей пользоваться и в каких бизнес-процессах логистические модели могут быть внедрены.
Продолжением обучения в данной сфере может стать онлайн-курс СПбГУ «Машинное обучение: основы».