Повсеместное внедрение в промышленности все большего количества устройств по сбору данных предполагает наличие аналитиков, способных выявлять закономерности в данных, дающих возможности для роста бизнеса.
В курсе рассматриваются ключевые этапы анализа данных от сбора и предварительной очистки до валидации создаваемых моделей машинного обучения. Приведена категоризация решаемых задач, рассмотрены основные алгоритмы для каждого из типа задач, на практических кейсах закреплены теоретические знания.